Quasi-free methyl rotation in zeolitic imidazolate framework-8.

نویسندگان

  • Wei Zhou
  • Hui Wu
  • Terrence J Udovic
  • John J Rush
  • Taner Yildirim
چکیده

Using neutron inelastic scattering and diffraction, we have studied the quantum methyl rotation in zeolitic imidazolate framework-8 (ZIF-8: Zn(MeIM)(2), MeIM = 2-methylimidazolate). The rotational potential for the CH(3) groups in ZIF-8 is shown to be primarily 3-fold in character. The ground-state tunneling transitions at 1.4 K of 334 +/- 1 mueV for CH(3) groups in hydrogenated ZIF-8 (H-ZIF-8) and 33 +/- 1 mueV for CD(3) groups in deuterated ZIF-8 (D-ZIF-8) indicate that the barrier to internal rotation is small compared to almost all methylated compounds in the solid state and that methyl-methyl coupling is negligible. A 2.7 +/- 0.1 meV scattering peak assigned to the ground-state to first-excited-state, hindered rotational transition for H-ZIF-8, combined with a approximately 3 meV activation energy for methyl-group 3-fold jump reorientation estimated by quasi-elastic neutron scattering, suggests a very low methyl rotational barrier of approximately 7 meV. Results are compared to the CH(3) rotational amplitude at 3.5 K derived from neutron diffraction data, which are also consistent with a small 3-fold barrier and a very low energy rotational oscillation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Porous Proton Exchange Membrane Based Zeolitic Imidazolate Framework-8 (ZIF-8)

Metal-organic frameworks (MOFs) are emerging material class for the past few years due to its tailorability characteristics for various applications. However, the research and development (R&D) of MOFs is still scarce for fuel cell system. This may be due to the several difficulties faced in selecting a good MOFs-based electrolyte, which consequently affects both proton conduction and methanol ...

متن کامل

Controlled synthesis of a catalytically active hybrid metal-oxide incorporated zeolitic imidazolate framework (MOZIF).

A rare hybrid Metal-Oxide incorporated Zeolitic Imidazolate Framework, MOZIF-1, containing tetrahedral Zn(II) and Mo(VI) centres has been synthesized. MOZIF-1 can degrade methyl orange and orange II dyes under visible light. Na3[PMo12O40] is the source of Mo(VI) in MOZIF-1.

متن کامل

Amorphization of the prototypical zeolitic imidazolate framework ZIF-8 by ball-milling.

We report the rapid amorphization of the prototypical substituted zeolitic imidazolate framework, ZIF-8, by ball-milling. The resultant amorphous ZIF-8 (a(m)ZIF-8) possesses a continuous random network (CRN) topology with a higher density and a lower porosity than its crystalline counterpart. A decrease in thermal stability upon amorphization is also evident.

متن کامل

Mechanochemical dry conversion of zinc oxide to zeolitic imidazolate framework.

Mechanochemical dry conversion that only uses zinc oxide and an imidazole ligand proved to be effective and reliable for fabrication of a zeolitic imidazolate framework with a polycrystalline grain boundary and a core-shell structure. The zinc oxide crystals are converted into a zeolitic imidazolate framework to a depth of approx. 10 nm below the surface.

متن کامل

Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes.

Nanoporous carbons with high surface area are achieved through direct carbonization of a commercially available zeolitic imidazolate framework (ZIF-8) without any additional carbon sources. The resultant nanoporous carbons exhibit high electrochemical capacitances in an acidic aqueous electrolyte.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 112 49  شماره 

صفحات  -

تاریخ انتشار 2008